Let \(n \geq 2\) be an arbitrary integer. We show that for any two asymmetric digraphs \(D\) and \(F\) with \(m\)-\(\text{rad} F \geq \max\{4, n+1\}\), there exists an asymmetric digraph \(H\) such that \(m_M(H) \cong D\), \(m_P(H) \cong F\), and \(md(D, F) = n\).
Furthermore, if \(K\) is a nonempty asymmetric digraph isomorphic to an induced subdigraph of both \(D\) and \(F\), then there exists a strong asymmetric digraph \(H\) such that
\(m_M(H) \cong D\), \(m_P(H) \cong F\), and \(m_M(H) \cap m_P(H) \cong K\) if \(m\)-\(\text{rad}_{H_0}F \geq 4\), where \(H_0\) is a digraph obtained from \(D\) and \(F\) by identifying vertices similar to those in \(K\).