Consider \(n\) bridge teams each consisting of two pairs (the two pairs are called \({teammates}\)). A match is a triple \((i, j, b)\) where pair \(i\) opposes pair \(j\) on a board \(b\); here \(i\) and \(j\) are not teammates and “oppose” is an ordered relation. The problem is to schedule a tournament for the \(n\) teams satisfying the following conditions with a minimum number of boards:
We call a schedule satisfying the above five conditions a \({complete \; coupling \; round \; robin \; schedule}\) (CCRRS) and one satisfying the first four conditions a \({coupling \; round \; robin \; schedule}\) (CRRS). While the construction of CCRRS is a difficult combinatorial problem, we construct CRRS for every \(n \geq 2\).