A total labeling of a graph \( G \) with \( p \) vertices and \( q \) edges is a one-to-one mapping from \( V(G) \cup E(G) \) onto \( \{1,2,\ldots,p+q\} \). If the edge-weights (resp. vertex-weights) form an arithmetic progression starting from \( a \) and having common difference \( d \), then the labeling is called an \( (a,d) \)-edge (resp. vertex) – antimagic total labeling. In this paper, we consider such labeling applied to the generalized Petersen graph.