Contents

A New Approach to Distance Stable Graphs

Wayne Goddard1, Ortrud R. Oellermann2, Henda C. Swart2
1Massachusetts Institute of Technology USS.A.
2University of Natal Durban 4001 SOUTH AFRICA

Abstract

Let \(k\) and \(\ell\) be nonnegative integers, not both zero, and \(D \subseteq {N} – \{1\}\). A (connected) graph \(G\) is defined to be \((k, \ell, D)\)-stable if for every pair \(u, v\) of vertices of \(G\) with \(d_G(u, v) \in D\) and every set \(S\) consisting of at most \(k\) vertices of \(V(G) – \{u, v\}\) and at most \(\ell\) edges of \(E(G)\), the distance between \(u\) and \(v\) in \(G – S\) equals \(d_G(u, v)\). For a positive integer \(m\), let \({N}_{\geq m} = \{x \in {N} \mid x \geq m\}\). It is shown that a graph is \((k, \ell, \{m\})\)-stable if and only if it is \((k, \ell, {N}_{\geq m})\)-stable. Further, it is established that for every positive integer \(x\), a graph is \((k + x, \ell, \{2\})\)-stable if and only if it is \((k, \ell+x, \{2\})\)-stable. A generalization of \((k, \ell, \{m\})\)-stable graphs is considered. For a planar \((k, 0, \{m\})\)-stable graph, \(m \geq 3\), a sharp bound for \(k\) in terms of \(m\) is derived.