An algorithm is presented for finding all \((0,1)\)-solutions to the matrix problem \(AX = J\), where \(A\) is a \((0,1)\)-matrix and \(J\) is the all \(1\)’s column vector. It is applied to the problem of enumerating distinct cyclic Steiner systems and five new values are obtained. Specifically, the number of distinct solutions to \(S(2,3,55), S(2,3,57), S(2,3,61), S(2,3,63)\), and \(S(3,4,22)\) are \(121,098,240, 84,672,512, 2,542,203,904, 1,782,918,144\), and \(1140\), respectively.