We examine a query posed as a conjecture by Key and Moori [11, Section 7] concerning the full automorphism groups of designs and codes arising from primitive permutation representations of finite simple groups, and based on results for the Janko groups \(J_1\) and \(J_2\) as studied in [11]. Here, following that same method of construction, we show that counter-examples to the conjecture exist amongst some representations of some alternating groups, and that the simple symplectic groups in their natural representation provide an infinite class of counter-examples.