Contents

Hinge Systems-Spectra and Embeddings

David A. Pike1, Michael E. Raines2
1Department of Mathematics and Statistics Memorial University of Newfoundland St. John’s, Newfoundland, A1C 587
2Department of Mathematics and Statistics Western Michigan University Kalamazoo, Michigan 49008-5152

Abstract

We define the \( B_2 \) block-intersection graph of a balanced incomplete block design \( (V,\mathfrak{B}) \) having order \( n \), block size \( k \), and index \( \lambda \), or BIBD\( (n,k,\lambda) \), to be the graph with vertex set \( \mathfrak{B} \) in which two vertices are adjacent if and only if their corresponding blocks have exactly two points of \( V \) in common. We define an undirected (resp. directed) hinge to be the multigraph with four vertices which consists of two undirected (resp. directed) 3-cycles which share exactly two vertices in common. An undirected (resp. directed) hinge system of order \( n \) and index \( \lambda \) is a decomposition of \( \lambda K_n \) (resp. \( \lambda{K}_n^* \)) into undirected (resp. directed) hinges. In this paper, we show that each component of the \( B_2 \) block-intersection graph of a simple BIBD\( (n,3,2) \) is 2-edge-connected; this enables us to decompose pure Mendelsohn triple systems and simple 2-fold triple systems into directed and undirected hinge systems, respectively. Furthermore, we obtain a generalisation of the Doyen-Wilson theorem by giving necessary and sufficient conditions for embedding undirected (resp. directed) hinge systems of order \( n \) in undirected (resp. directed) hinge systems of order \( v \). Finally, we determine the spectrum for undirected hinge systems for all indices \( \lambda \geq 2 \) and for directed hinge systems for all indices \( \lambda \geq 1 \).