An \(S_{s,t}\) distar-factorization of \(DK_{m}\) is an edge partitioning of the complete symmetric directed graph \(DK_{m}\) into subdigraphs each of which is isomorphic to the distar \(S_{s,t}\) (the distar \(S_{s,t}\) being obtained from the star \(K_{1,s+t}\) by directing \(s\) of the edges into the centre and \(t\) of the edges out of the centre). We consider the question, “When can the arcs of \(DK_{m}\) be partitioned into arc-disjoint subgraphs each isomorphic to \(S_{s,t}\)?” and give necessary and sufficient conditions for \(S_{s,t}\) distar-factorizations of \(DK_{m}\) in the cases when either \(m\equiv 0\) or \(1 \pmod{s+t}\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.