P. Paulraja recently showed that if every edge of a graph \(G\) lies in a cycle of length at most \(5\) and if \(G\) has no induced \(K_{i,s}\) as a subgraph, then \(G\) has a spanning closed trail. We use a weaker hypothesis to obtain a stronger conclusion. We also give a related sufficient condition for the existence of a closed trail in \(G\) that contains at least one end of each edge of \(G\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.