Ho and Shee [5] showed that for a graph \(G\) of order \(n\) \((\geq4)\) and size \(m\) to be cordial, it is necessary that \(m\) must be less than \(\frac{n(n-1)}{2} – \left\lceil\frac{n}{2}\right\rceil + 2\).
In this paper, we prove that there exists a cordial graph of order \(n\) and size \(m\), where
\(n-1\leq m\leq\frac{n(n-1)}{2} – \left\lceil\frac{n}{2}\right\rceil + 1.\)
1970-2025 CP (Manitoba, Canada) unless otherwise stated.