A triangulation of a surface is \(\delta\)-regular if each vertex is contained in exactly \(\delta\) edges. For each \(\delta \geq 7\), \(\delta\)-regular triangulations of arbitrary non-compact surfaces of finite genus are constructed. It is also shown that for \(\delta \leq 6\) there is a \(\delta\)-regular triangulation of a non-compact surface \(\sum\) if and only if \(\delta = 6\) and \(\sum\) is homeomorphic to one of the following surfaces: the Euclidean plane, the two-way-infinite cylinder, or the open Möbius band.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.