We study the isomorphic factorization of complete bipartite graphs into trees. It is known that for complete bipartite graphs, the divisibility condition is also a sufficient condition for the existence of isomorphic factorization. We give necessary and sufficient conditions for the divisibility, that is, necessary and sufficient conditions for a pair \([m,n]\) such that \(mn\) is divisible by \((m+n-1)\), and investigate structures of the set of pairs \([m,n]\) satisfying divisibility. Then we prove that the divisibility condition is also sufficient for the existence of an isomorphic tree factor of a complete bipartite graph by constructing the tree dividing \(K({m,n})\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.