The existence of holey self-orthogonal Latin squares with symmetric orthogonal mates (HSOLSSOMs) of types \(h^n\) and \(1^{n}u^1\) is investigated. For type \(h^n\), new pairs of \((h, n)\) are constructed so that the possible exceptions of \((h, n)\) for the existence of such HSOLSSOMs are reduced to \(11\) in number. Two necessary conditions for the existence of HSOLSSOMs of type \(1^{n}u^1\) are (1) \(n \geq 3u + 1\) and (2) \(n\) must be even and \(u\) odd. Such an HSOLSSOM gives rise to an incomplete SOLSSOM. For \(3 \leq u \leq 15\), the necessary conditions are shown to be sufficient with seven possible exceptions. It is also proved that such an HSOLSSOM exists whenever even \(n \geq 5u + 9\) and odd \(u \leq 9\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.