On Covering Designs with Block Size \(5\) and Index \(4\)

Ahmed M. Assaf1, N. Shalaby2
1Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859 U.S.A.
2Department of Mathematics University of Toronto Toronto, Ontario, MSA 1A1 CANADA

Abstract

A \((v, k, \lambda)\) covering design of order \(v\), block size \(k\), and index \(\lambda\) is a collection of \(k\)-element subsets, called blocks of a set \(V\) such that every \(2\)-subset of \(V\) occurs in at least \(\lambda\) blocks. The covering problem is to determine the minimum number of blocks in a covering design. In this paper we solve the covering problem with \(k = 5\) and \(\lambda = 4\) and all positive integers \(v\) with the possible exception of \(v = 17, 18, 19, 22, 24, 27, 28, 78, 98\).