Let \(G\) be a graph with minimum degree \(\delta\). For each \(i = 1, 2, \ldots, \delta \), let \(a_i(G)\) (resp. \(\alpha^*_i(G)\)) denote the smallest integer \(k\) such that \(G\) has an \([i, k]\)-factor (resp. a connected \([i, k]\)-factor). Denote by \(G_n\) a complete \(n\)-partite graph. In this paper, we determine the value of \(\alpha_t(G_n)\), and show that \(0 \leq \alpha^*_1(G_n) – \alpha(G_n) \leq 1\) and \(\alpha^*_i(G_n) = a_i(G_n)\) for each \(i = 2, 3, \ldots, \delta\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.