In this paper it is shown that the number of induced subgraphs (the set of edges is induced by the set of nodes) of trees of size \(n\) satisfy a central limit theorem and that multivariate asymptotic expansions can be obtained. In the case of planted plane trees, \(N\)-ary trees, and non-planar rooted labelled trees, explicit formulae can be given. Furthermore, the average size of the largest component of induced subgraphs in trees of size \(n\) is evaluated asymptotically.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.