Count-Wheels

Steven H.Weintraub1
1 Louisiana State University Baton Rouge LA 70803-4918

Abstract

We define a sequence of positive integers \({A} = (a_1, \ldots, a_n)\) to be a count-wheel of length \(n\) and weight \(w = a_1 + \cdots + a_n\) if it has the following property:
Let \(\overline{A}\) be the infinite sequence \((\overline{a_i})=(a_1, \ldots, a_n, a_1, \ldots, a_n, \ldots)\). Then there is a sequence \(0 = i(0) < i(1) < i(2) < \cdots\) such that for every positive integer \(k\), \(\overline{a}_{i(k-1)+1} + \cdots + \overline{a}_{i(k)} = k\). There are obvious notions of when a count-wheel is reduced or primitive. We show that for every positive integer \(w\), there is a unique reduced count-wheel of weight \(w\), denoted \([w]\). Also, \([w]\) is primitive if and only if \(w\) is odd. Further, we give several algorithms for constructing \([w]\), and a formula for its length. (Remark: The count-wheel \([15] = (1, 2, 3, 4, 3, 2)\) was discovered by medieval clock-makers.)