Partitions of all quadruples of an \(n\)-set into pairwise disjoint packings with no common triples, have applications in the design of constant weight codes with minimum Hamming distance 4. Let \(\theta(n)\) denote the minimal number of pairwise disjoint packings, for which the union is the set of all quadruples of the \(n\)-set. It is well known that \(\theta(n) \geq n-3 \text{ if } n \equiv 2 \text{ or } 4 \text{ (mod } 6),\) \(\theta(n) \geq n-2 \text{ if } n \equiv 0, 1, \text{ or } 3 \text{ (mod } 6),\) and \(\theta(n) \geq n-1 \text{ for } n \equiv 5 \text{ (mod } 6).\) \(\theta(n) = n-3\) implies the existence of a large set of Steiner quadruple systems of order \(n\). We prove that \(\theta(2^k) \leq 2^k-2, \quad k \geq 3,\) and if \(\theta(2n) \leq 2n-2, \quad n \equiv 2 \text{ or } 4 \text{ (mod } 6),\) then \(\theta(4n) \leq 4n-2.\) Let \(D(n)\) denote the maximum number of pairwise disjoint Steiner quadruple systems of order \(n\). We prove that \(D(4n) \geq 2n + \min\{D(2n), n-2\}, \quad n \equiv 1 \text{ or } 5 \text{ (mod } 6), \quad n > 7,\) and \(D(28) \geq 18.\)
1970-2025 CP (Manitoba, Canada) unless otherwise stated.