On the Girth of Digraphs with High Connectivity

Jian Shen1, D.A. Gregory1
1Department of Mathematics and Statistics Queen’s University at Kingston K7L 3N6 Canada

Abstract

In 1970, Behzad, Chartrand and Wall conjectured that the girth of every \(r\)-regular digraph \(G\) of order \(n\) is at most \(\left\lceil \frac{n}{r} \right\rceil\). The conjecture follows from a theorem of Menger and Dirac if \(G\) has strong connectivity \(x = r\). We show that any digraph with minimum in-degree and out-degree at least \(r\) has girth at most \(\left\lceil \frac{n}{r} \right\rceil\) if \(\kappa = r – 1\). We also find from the literature a family of counterexamples to a conjecture of Seymour.