Bounds on Domination Number of Complete Grid Graphs

Rachid Cherifi1, Sylvain Gravier2, Ismail Zighem3
1GERAD and Département de mathématiques et de génie industriel Ecole Polytech- nique de Montréal C.P. 6079, Succursale ” Centre-ville” Montréal, Québec, Canada, H3C 3A7.
2C.N.R.S., Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1 (France)
3Université Joseph Fourier, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Greno- ble Cedex 1 (France)

Abstract

In a paper of Cockayne et al., the authors establish an upper and a lower bound for the dominating number of the complete grid graph \(G_{n,n}\), of order \(n^2\). Namely, they proved a “formula”, and cited two questions of Paul Erdős. One of these questions was “Can we improve the order of the difference between lower and upper bounds from \(\frac{n}{5}\) to \(\frac{n}{2}\)?”. Our aim here is to give a positive answer to this question.