Let \(n_1, n_2, \ldots, n_k\) be integers of at least two. Johansson gave a minimum degree condition for a graph of order exactly \(n_1 + n_2 + \cdots + n_k\) to contain \(k\) vertex-disjoint paths of order \(n_1, n_2, \ldots, n_k\), respectively. In this paper, we extend Johansson’s result to a corresponding packing problem as follows. Let $G$ be a connected graph of order at least \(n_1 + n_2 + \cdots + n_k\). Under this notation, we show that if the minimum degree sum of three independent vertices in \(G\) is at least:
\[3(\lfloor \frac{n_1}{2}\rfloor+\lfloor \frac{n_2}{2}\rfloor+ \ldots +\lfloor \frac{n_k}{2}\rfloor)\]
then \(G\) contains \(k\) vertex-disjoint paths of order \(n_1, n_2, \ldots, n_k\), respectively, or else \(n_1 = n_2 = \cdots = n_e = 3\), or \(k = 2\) and \(n_1 = n_2 = \text{odd}\). The graphs in the exceptional cases are completely characterized. In particular, these graphs have more than \(n_1 + n_2 + \cdots + n_k\) vertices.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.