On Generalizing a Theorem of Jung

Douglas Bauer1, H.J. Broersma2, H.J. Veldman2
1Department of Pure and Applied Mathematics Stevens Institute of Technology Hoboken, NJ 07030, U.S.A.
2Faculty of Applied Mathematics University of Twente 7500 AE Enschede, The Netherlands

Abstract

For a graph \(G\), let \(\sigma_k = \min \{\sum_{i=1}^{k} d(v_i) \mid \{v_1, \ldots, v_k\}\) { is an independent set
of vertices in } G\}. Jung proved that every \(1\)-tough graph \(G\) with \(|V(G)| = n \geq 11\) and \(\sigma_2 > n-4\) is hamiltonian. This result is generalized as follows: if \(G\) is a \(1\)-tough graph with \(|V(G)| = n \geq 3\) such that \(\sigma_3 > n\) and for all \(x, y \in V(G)\), \(d(x,y) = 2\) implies \(\max\{d(x), d(y)\} \geq \frac{1}{2}(n-4)\), then \(G\) is hamiltonian. It is also shown that the condition \(\sigma_3 \geq n\), in the latter result, can be dropped if \(G\) is required to be \(3\)-connected and to have at least \(35\) vertices.