Tripacking of Pairs by Quintuples The Case \(v ≡ 2 (mod 4)\)

Ahmed H.Assaf1, L.P.S. Singh2
1 Department of Mathematics Central Michigan University Mt. Pleasant, Michigan U.S.A, 48859
2Department of Computer Science Central Michigan University Mt. Pleasant, Michigan U.S.A. 48859

Abstract

Let \(V\) be a finite set of order \(\nu\). A \((\nu,\kappa,\lambda)\) packing design of index \(\lambda\) and block size \(\kappa\) is a collection of \(\kappa\)-element subsets, called blocks, such that every \(2\)-subset of \(V\) occurs in at most \(\lambda\) blocks. The packing problem is to determine the maximum number of blocks, \(\sigma(\nu,\kappa,\lambda)\), in a packing design. It is well known that \(\sigma(\nu,\kappa,\lambda) < \left[ \frac{\nu}{\kappa}[\frac{(\nu-1)}{\kappa(\kappa-1)}] \right] = \psi(\nu,\kappa,\lambda)\), where \([x]\) is the largest integer satisfying \(x \ge [x]\). It is shown here that if \(v \equiv 2 \pmod{4}\) and \(\nu \geq 6\) then \(\sigma(\nu,5,3) = \psi(\nu,5,3)\) with the possible exception of \(v = 38\).