Let \({PG}(n,q)\) be the projective \(n\)-space over the Galois field \({GF}(q)\). A \(k\)-cap in \({PG}(n,q)\) is a set of \(k\) points such that no three of them are collinear. A \(k\)-cap is said to be complete if it is maximal with respect to set-theoretic inclusion. In this paper, using classical algebraic varieties, such as Segre varieties and Veronese varieties, some new infinite classes of caps are constructed.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.