The Splitting Number and Skewness of \(C_n \times C_m\)

Candido F.Xavier de Mendonga Neto1, Karl Schaffer2, Erico F.Xavier3, Jorge Stolfi3, Luerbio Faria4, Celina M.H.de Figueiredo5
1Departamento de Informatica, UEM, Maringé, PR, Brazil.
2De Anza College, Cupertino, CA, USA.
3Instituto de Computacio, Unicamp, Campinas, SP, Brazil.
4Faculdade de Formacio de Professores, UERJ, Sao Gongalo, RJ, Brazil.
5Instituto de Matematica and COPPE Sistemas e Computagéo, UFRJ, Rio de Janeiro, RJ, Brazil.

Abstract

The skewness of a graph \(G\) is the minimum number of edges that need to be deleted from \(G\) to produce a planar graph. The splitting number of a graph \(G\) is the minimum number of splitting steps needed to turn \(G\) into a planar graph; where each step replaces some of the edges \(\{u,v\}\) incident to a selected vertex \(u\) by edges \(\{u’,v\}\), where \(u’\) is a new vertex. We show that the splitting number of the toroidal grid graph \(C_n \times C_m\) is \(\min\{n,m\} – 2\delta_{n,3}\delta_{m,3} – \delta_{n,4}\delta_{m,3} – \delta_{n,3}\delta_{m,4}\) and its skewness is \(\min\{n, m\} – \delta_{n,3}\delta_{m,3 }- \delta_{n,4}\delta_{m,3} – \delta_{n,3}\delta_{m,4}\). Here, \(\delta\) is the Kronecker symbol, i.e., \(\delta_{i,j}\) is \(1\) if \(i = j\), and \(0\) if \(i \neq j\).