Set-Magic Labelings of Infinite Graphs

N.M. Singhi1, G.R. Vijayakumar1, N.Usha Devi2
1School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
2Mannar Thirumalai Naickar College Pasumalai Madurai 625004 Tamil Nadu India

Abstract

A graph \(G\) without isolated vertices is said to be set-magic if its edges can be assigned distinct subsets of a set \(X\) such that for every vertex \(v\) of \(G\), the union of the subsets assigned to the edges incident with \(v\) is \(X\); such a set-assignment is called a set-magic labeling of \(G\). In this note, we study infinite set-magic graphs and characterize infinite graphs \(G\) having set-magic labelings \(f\) such that \(|f(e)| = 2\) for all \(e \in E(G)\).