Perfect \(\langle k,r \rangle\)-Latin Squares

Abstract

A perfect \(\langle k,r \rangle\)-latin square \(A = (a_{i,j})\) of order \(n\) with \(m\) elements is an \(n \times n\) array in which each element occurs in each row and column, and the element \(a_{i,j}\) occurs either \(k\) times in row \(i\) and \(r\) times in column \(j\), or occurs \(r\) times in row \(i\) and \(k\) times in column \(j\). In 1989, Cai, Kruskal, Liu, and Shen studied the existence of perfect \(\langle k,r \rangle\)-latin squares. Here, a simpler construction of perfect \(\langle k,r \rangle\)-latin squares is given.