Basic properties of in-degree distribution of a general model of random digraphs \(D(n, \mathcal{P})\) are presented. Then some relations between random digraphs \(D(n, \mathcal{P})\) for different probability distributions \(\mathcal{P}\)’s are studied. In this context, a problem of the existence of a threshold function for every monotone digraph property of \(D(n, \mathcal{P})\) is discussed.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.