Let \(\operatorname{PW}(G)\) and \(\operatorname{TW}(G)\) denote the path-width and tree-width of a graph \(G\), respectively. Let \(G+H\) denote the join of two graphs \(G\) and \(H\). We show in this paper that
\(\operatorname{PW}(G + H) = \min\{|V(G)| + \operatorname{PW}(H),|V(H)| + \operatorname{PW}(G)\}\)
and
\(\operatorname{TW}(G + H) = \min\{|V(G)| + \operatorname{TW}(H), |V(H)| + \operatorname{TW}(G)\}\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.