Some Decomposition Invariants of Crowns

Chiang Lin1, Jenq-Jong Lin2, Hung-Chih Lee3
1Department of Mathematics National Central University Chung-Li. Taiwan 320, R.O.C.
2Department of Commercial Design Ling Tung College Taichung, Taiwan 408, R.O.C.
3Department of Information Management Ling Tung College Taichung, Taiwan 408, R.O.C.

Abstract

Suppose \(G\) is a graph. The minimum number of paths (trees, forests, linear forests, star forests, complete bipartite graphs, respectively) needed to decompose the edges of \(G\) is called the path number (tree number, arboricity, linear arboricity, star arboricity and biclique number, respectively) of \(G\). These numbers are denoted by \(p(G), t(G), a(G), la(G), sa(G), r(G)\), respectively. For integers \(1 \leq k \leq n\), let \(C_{n,k}\) be the graph with vertex set \(\{a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n\}\) and edge set \(\{a_ib_j :i=1,2,\ldots ,n,j \equiv i+1,i+2, \ldots ,i+k \text{(mod n)}\}\). We call \(C_{n,k}\) a crown. In this paper, we prove the following results:

  1. \(p(C_{n,k}) = \begin{cases}
    n & \text{if \(k\) is odd}, \\
    {(\frac{k}{2})+1} & \text{if \(k\) is even}.
    \end{cases}\)
  2. \(a(C_{n,k}) = t(C_{n,k}) = la(C_{n,k}) = \left\lceil \frac{k+1}{2} \right\rceil\) if \(k \geq 2\).
  3. For \(k \geq 3\) and \(k \in \{3,5\} \cup \{n-3,n-2,n-1\}\),
    \[sa(C_{n,k}) = \begin{cases}
    \left\lceil \frac{k}{2} \right\rceil + 1 & \text{if \(k\) is odd}, \\
    \left\lceil \frac{k}{2} \right\rceil + 2 & \text{if \(k\) is even}.
    \end{cases}\]
  4. \(r(C_{n,k}) = n\) if \(k \leq \frac{n+1}{2}\) or \(\gcd(k,n) = 1\).

Due to (3), (4), we propose the following conjectures.

\(\textbf{Conjecture A}\). For \(3 \leq k \leq n-1\),
\[sa(C_{n,k}) = \begin{cases}
\left\lceil \frac{k}{2} \right\rceil + 1 & \text{if \(k\) is odd}, \\
\left\lceil \frac{k}{2} \right\rceil + 2 & \text{if \(k\) is even}.
\end{cases}\]
\(\textbf{Conjecture B}\). For \(1 \leq k \leq n-1\), \(r(C_{n,k}) = n\).