Nonnegative signed Roman domination in graphs

Nasir Dehgardi1, L. Volkmann2
1Department of Mathematics and Computer Science Sirjan University of Technology Sirjan University of Technology Sirjan, I.R. Iran
2Lehrstuhl II fur Mathematik RWTH Aachen University 52056 Aachen, Germany

Abstract

Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A nonnegative signed Roman dominating function (NNSRDF) on a graph \(G\) is a function \(f:V(G)\to \{-1,1,2\}\) satisfying the conditions that (i) \(\sum_{x\in N[v]}f(x)\ge 0\) for each \(v \in V(G)\), where \(N[v]\) is the closed neighborhood of \(v\) and (ii)every vertex u for which \(f(u)=-1\) has a neighbor v for which \(f(v)=2\). The weight of an NNSRDF \(f\) is \(\omega(f) = \sum_{v\in V(G)} f(v)\). The nonnegative signed Roman domination number \(\gamma_{sR}^{NN} (G)\) of \(G\) is the minimum weight of an NNSRDF \(G\) In this paper, we initiate the study of the nonnegative signed Roman domination number of a graph and we present different bounds on \(\gamma _{sR}^{NN}(G) \ge (8n-12m)/7\). In addition, if \(G\) is a bipartite graph of order \(n\), then we prove that \(\gamma _{sR}^{NN}(G) \ge^\frac{3}{2}(\sqrt{4n+9}-3)-n\), and we characterize the external graphs.

Keywords: nonnegative signed Roman dominating function, nonnegative signed Roman dominating