A graph is well-covered if every maximal independent set is also a maximum independent set. A \(1\)-well-covered graph \(G\) has the additional property that \(G – v\) is also well-covered for every point \(v\) in \(G\). Thus, the \(1\)-well-covered graphs form a subclass of the well-covered graphs. We examine triangle-free \(1\)-well-covered graphs. Other than \(C_5\) and \(K_2\), a \(1\)-well-covered graph must contain a triangle or a \(4\)-cycle. Thus, the graphs we consider have girth \(4\). Two constructions are given which yield infinite families of \(1\)-well-covered graphs with girth \(4\). These families contain graphs with arbitrarily large independence number.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.