Given a configuration of pebbles on the vertices of a graph \(G\), a pebbling move consists of taking two pebbles off a vertex \(v\) and putting one of them back on a vertex adjacent to \(v\). A graph is called \({pebbleable}\) if for each vertex \(v\) there is a sequence of pebbling moves that would place at least one pebble on \(v\). The \({pebbling\;number}\) of a graph \(G\), is the smallest integer \(m\) such that \(G\) is pebbleable for every configuration of \(m\) pebbles on \(G\). A graph \(G\) is said to be class \(0\) if the pebbling number of \(G\) is equal to the number of vertices in \(G\). We prove that \(Bi-wheels\), a class of diameter three graphs, are class \(0\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.