Siri and Gvozdjak proved in [9] that the bananas surface, the pseudosurface consisting in the \(2\)-amalgamation of two spheres, does not admit a finite Kuratowski Theorem.
In this paper we prove that pseudosurfaces arising from the \(n\)-amalgamation of two closed surfaces, \(n \geq 2\), do not admit a finite Kuratowski Theorem, by showing an infinite family of minimal non-embeddable graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.