Some a-Graphs and Odd Graceful Graphs

M.A. Seoud1, E.F. Helmi1
1Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

We show that if \(G\) has an odd graceful labeling \(f\) such that \(\max\{f(x): f(x) \text{ is even}, x \in A\} < \min\{f(x): f(x) \text{ is odd}, x \in B\}\), then \(G\) is an o-graph, and if \(G\) is an a-graph, then \(G \odot K_{n}\) is odd graceful for all \(w \geq 1\). Also, we show that if \(G_{1}\) is an a-graph and \(G_{2}\) is an odd graceful, then \(G_{1} \cup G_{2}\) is odd graceful. Finally, we show that some families of graphs are a-graphs and odd graceful.