On Theorems Equivalent with Kotzig’s Result on Graphs with Unique \(1\)-Factors

Stefan Szeider1
1Department of Computer Science University of Toronto M5S 3G4 Toronto, Ontario, Canada

Abstract

We show that several known theorems on graphs and digraphs are equivalent. The list of equivalent theorems include Kotzig’s result on graphs with unique \(1\)-factors, a lemma by Seymour and Giles, theorems on alternating cycles in edge-colored graphs, and a theorem on semicycles in digraphs.

We consider computational problems related to the quoted results; all these problems ask whether a given (di)graph contains a cycle satisfying certain properties which runs through \(p\) prescribed vertices. We show that all considered problems can be solved in polynomial time for \(p < 2\) but are NP-complete for \(p \geq 2\).