Contents

-

The Number of Solutions of Pell Equations x2ky2=N And x2+2yky2=N Over Fp

Ahmet Tekcan1
1 Ulugad University, FACULTY oF SCIENCE, DEPARTMENT OF MATHEMATICS, GORUKLE 16059. Bursa-TURKEY

Abstract

Let p be a prime number such that p1,3(mod4), let Fp be a finite field, and let NFp=Fp{0} be a fixed element. Let Ppk(N):x2ky2=N and P~pk(N):x2+2yky2=N be two Pell equations over Fp, where k=p14 or k=p34, respectively. Let Ppk(N)(Fp) and P~pk(N)(Fp) denote the set of integer solutions of the Pell equations Ppk(N) and P~pk(N), respectively. In the first section, we give some preliminaries from the general Pell equation x2ky2=±N. In the second section, we determine the number of integer solutions of Ppk(N). We prove that Ppk(N)(Fp)=p+1 if p1(mod4) or p7(mod12) and Ppk(N)(Fp)=p1 if p11(mod12). In the third section, we consider the Pell equation P~pk(N). We prove that P~pk(N)(Fp)=2p if p1(mod4) and NQp; P~pk(N)(Fp)=0 if p1(mod4) and NQp; P~pk(N)(Fp)=p+1 if p3(mod4).