Let G be a k-edge connected simple graph with k≤3, minimal degree δ(G)≥3, and girth g, where r=⌊g−12⌋. If the independence number α(G) of G satisfies
α(G)<6(δ−1)⌊g2⌋−6(4−k)(δ−2)–6(g−2r−1)4−k then G is up-embeddable.