An Extremal Problem on the Potentially \(K_{r+1} – e\) Graphic Sequences

Yin Jianhua1, Li Jiongsheng2, Mao Rui3
1Department of Computer Science and Technology University of Science and Technology of China, Hefei 230027, China
2Department of Mathematics University of Science and Technology of China, Hefei 230026, China
3Department of Mathematics and Information Science Guangxi University, Nanning 530004, China

Abstract

Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1 (1999), 387-400) considered a variation of the classical Turén-type extremal problems as follows: for a given graph \(H\), determine the smallest even integer \(\sigma (H,n)\) such that every \(n\)-term positive graphic sequence \(\pi = (d_1, d_2, \ldots, d_n)\) with term sum \(\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(H,n)\) has a realization \(G\) containing \(H\) as a subgraph. In particular, they pointed out that \(3n – 2 \leq \sigma(K_{4} – e, n) \leq 4n – 4\), where \(K_{r+1} – e\) denotes the graph obtained by removing one edge from the complete graph \(K_{r+1}\) on \(r+1\) vertices. Recently, Lai determined the values of \(\sigma(K_4 – e, n)\) for \(n \geq 4\). In this paper, we determine the values of \(\sigma(K_{r+1} – e, n)\) for \(r \geq 3\) and \(r+1 \leq n \leq 2r\), and give a lower bound of \(\sigma(K_{r+1} – e, n)\). In addition, we prove that \(\sigma(K_5 – e, n) = 5n – 6\) for even \(n\) and \(n \geq 10\) and \(\sigma(K_5 – e, n) = 5n – 7\) for odd \(n\) and \(n \geq 9\).