Let \(e: \mathcal{S} \rightarrow \Sigma\) be a full polarized projective embedding of a dense near polygon \(\mathcal{S}\), i.e., for every point \(p\) of \(\mathcal{S}\), the set \(H_p\) of points at non-maximal distance from \(p\) is mapped by \(e\) into a hyperplane \(\Pi_p\) of \(\Sigma\). We show that if every line of \(S\) is incident with precisely three points or if \(\mathcal{S}\) satisfies a certain property (P\(_y\)) then the map \(p \mapsto \Pi_p\) defines a full polarized embedding \(e^*\) (the so-called dual embedding of \(e\)) of \(\mathcal{S}\) into a subspace of the dual \(\Sigma^*\) of \(\Sigma\). This generalizes a result of \([6]\) where it was shown that every embedding of a thick dual polar space has a dual embedding. We determine which known dense near polygons satisfy property (P\(_y\)). This allows us to conclude that every full polarized embedding of a known dense near polygon has a dual embedding.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.