Let \(G\) be a simple connected graph with \(n\) vertices. Denoted by \(L(G)\) the Laplacian matrix of G. In this paper, we present a sequence of graphs \({G_n}\) with \(\lim\limits_{n\to \infty} \mu_3(G_n) = 1.5550\) by investigating the eigenvalues of the line graphs of \({G_n}\). Moreover, we prove that the limit is the minimal limit point of the third largest Laplacian eigenvalues of graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.