The maximal clique that contains an edge which is not contained in any other maximal cliques is called essential. A graph in which each maximal clique is essential is said to be maximal clique irreducible. Maximal clique irreducible graphs were introduced and studied by W.D. Wallis and G.-H. Zhang in \(1990\) \([6]\). We extend the concept and define a graph to be weakly maximal clique irreducible if the set of all essential maximal cliques is a set of least number of maximal cliques that contains every edge. We characterized the graphs for which each induced subgraph is weakly maximal clique irreducible in \([4]\). In this article, we characterize the line graphs which are weakly maximal clique irreducible and also the line graphs which are maximal clique irreducible.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.