On Defining Numbers of \(k\)—Chromatic \(k\)—Regular Graphs

Nasrin Soltankhan1, E.S. Mahmoodian2
1Department of Mathematics Alzahra University Vanak Square 19834 Tehran, IR. Iran
2Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415 Tehran, IR. Iran

Abstract

In a given graph \(G\), a set \(S\) of vertices with an assignment of colors is a defining set of the vertex coloring of \(G\), if there exists a unique extension of the colors of \(S\) to a \(\chi(G)\)-coloring of the vertices of \(G\). A defining set with minimum cardinality is called a smallest defining set (of vertex coloring) and its cardinality, the defining number, is denoted by \(d(G, \chi)\). We study the defining number of regular graphs. Let \(d(n,r, \chi = k)\) be the smallest defining number of all \(r\)-regular \(k\)-chromatic graphs with \(n\) vertices, and \(f(n,k) = \frac{k-2}{2(k-1)} +\frac{2+(k-2)(k-3)}{2(k-1)}\). Mahmoodian and Mendelsohn (1999) determined the value of \(d(n,k, \chi = k)\) for all \(k \leq 5\), except for the case of \((n,k) = (10,5)\). They showed that \(d(n,k, \chi = k) = \lceil f(n,k) \rceil\), for \(k \leq 5\). They raised the following question: Is it true that for every \(k\), there exists \(n_0(k)\) such that for all \(n \geq n_0(k)\), we have \(d(n,k, \chi = k) = \lceil f(n,k) \rceil\)?

Here we determine the value of \(d(n,k, \chi = k)\) for each \(k\) in some congruence classes of \(n\). We show that the answer for the question above, in general, is negative. Also, for \(k = 6\) and \(k = 7\) the value of \(d(n,k, \chi = k)\) is determined except for one single case, and it is shown that \(d(10,5, \chi = 5) = 6\).