Near Polygons Having a Big Sub Near Polygon Isomorphic to \(H^D(2n-1,4)\)

Bart De Bruyn1, Pieter Vandecasteele1
1Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-8000 Gent, Belgium,

Abstract

We determine all spreads of symmetry of the dual polar space \(H^D(2n-1,q^2)\). We use this to show the existence of glued near polygons of type \(H^D(2n_1-1,q^2) \otimes H^D(2n_2-1,q^2)\). We also show that there exists a unique glued near polygon of type \(H^D(2n_1-1,4) \otimes H^D(2n_2-1,4)\) for all \(n_1,n_2 \geq 2\). The unique glued near polygon of type \(H^D(2n-1,4) \otimes Q(2n_2-1,q^2)\) has the property that it contains \(H^D(2n-1,4)\) as a big geodetically closed sub near polygon. We will determine all dense near \((2n+2)\)-gons, \(n \geq 3\), which have \(H^D(2n-1,4)\) as a big geodetically closed sub near polygon. We will prove that such a near polygon is isomorphic to either \(H^D(2n+1,4)\), \(H^D(2n-1,4) \otimes Q(5,2)\) or \(H^D(2n-1,4) \times L\) for some line \(L\) of size at least three.