A graph \(G\) is clique-perfect if the cardinality of a maximum clique-independent set of \(H\) is equal to the cardinality of a minimum clique-transversal of \(H\), for every induced subgraph \(H\) of \(G\). When equality holds for every clique subgraph of \(G\), the graph is \(c\)-clique-perfect. A graph \(G\) is \(K\)-perfect when its clique graph \(K(G)\) is perfect. In this work, relations are described among the classes of perfect, \(K\)-perfect, clique-perfect and \(c\)-clique-perfect graphs. Besides, partial characterizations of \(K\)-perfect graphs using polyhedral theory and clique subgraphs are formulated.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.