A New Sufficient Condition for Graphs to Have \((g, f)\)-Factors

Sizhong Zhou1, Jiashang Jiang1
1 School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 People’s Republic of China

Abstract

Let \(a\) and \(b\) be integers such that \(1 \leq a < b\), and let \(G\) be a graph of order \(n\) with \(n \geq \frac{(a+b)(2a+2b-3)}{a+1}\) and the minimum degree \(\delta(G) \geq \frac{(b-1)^2-(a+1)(b-a-2)}{a+1} \). Let \(g(x)\) and \(f(x)\) be two nonnegative integer-valued functions defined on \(V(G)\) such that \(a \leq g(x) \leq f(x) \leq b\) for each \(x \in V(G)\). We prove that if \(|N_G(x) \cup N_G(y)| \geq \frac{(b-1)n}{a+b} \) for any two nonadjacent vertices \(x\) and \(y\) in \(G\), then \(G\) has a \((g, f)\)-factor. Furthermore, it is shown that the result in this paper is best possible in some sense.