Wiener Index of a Type of Composite Graph

Mingjun Hu1
1 Department of Mathematics and Physics, Anhui University of Architecture Hefei, Anhui 230601, P. R. China

Abstract

The Wiener index, one of the oldest molecular topological descriptors used in mathematical chemistry, was well-studied during the past decades. For a graph \(G\), its Wiener index is defined as \(W(G) = \sum\limits_{\{u, v\} \subseteq V(G)} d_G(u, v)\), where \(d_G(u, v)\) is the distance between two vertices \(u\) and \(v\) in \(G\). In this paper, we study the Wiener index of a class of composite graph, namely, double graph. We reveal the relation between the Wiener index of a given graph and the one of its double graph as well as the relation between Wiener index of a given graph and the one of its \(k\)-iterated double graph. As a consequence, we determine the graphs with the maximum and minimum Wiener index among all double graphs and \(k\)-iterated double graphs of connected graphs of the same order, respectively.