Let \(\text{ASG}(2v+1,v;\mathbb{F}_q)\) be the \((2v+1)\)-dimensional affine-singular symplectic space over the finite field \(\mathbb{F}_q\) and let \(\text{ASp}_{2v+1}(\mathbb{F}_q)\) be the affine-singular symplectic group of degree \(2v+1\) over \(\mathcal{F}_q\). For any orbit \(O\) of flats under \(\text{ASp}_{2v+1}(\mathbb{F}_q)\), let \(\mathcal{L}\) be the set of all flats which are intersections of flats in \(O\) such that \(O \subseteq \mathcal{L}\) and assume the intersection of the empty set of flats in \(\text{ASG}(2v+1,v;\mathbb{F}_q)\) is \(\mathbb{F}_q^{2v+1}\). By ordering \(\mathcal{L}\) by ordinary or reverse inclusion, two lattices are obtained. This article discusses the relations between different lattices, classifies their geometricity, and computes their characteristic polynomial.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.