For any \(h \in \mathbb{N}\), a graph \(G = (V, E)\) is said to be \(h\)-magic if there exists a labeling \(l: E(G) \to \mathbb{Z}_h – \{0\}\) such that the induced vertex set labeling \(l^+: V(G) \to \mathbb{Z}_h\), defined by
\[l^+(v) = \sum\limits_{uv \in E(G)} l(uv)\]
is a constant map. When this constant is \(0\) we call \(G\) a zero-sum \(h\)-magic graph. The null set of \(G\) is the set of all natural numbers \(h \in \mathbb{N}\) for which \(G\) admits a zero-sum \(h\)-magic labeling. In this paper we will identify several classes of zero sum magic graphs and will determine their null sets.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.