On The Spectrum of Critical Sets in Back Circulant Latin Squares

Nicholas Cavenagh1, Diane Donovan1, Abdollah Khodkar1
1CENTRE FOR DISCRETE MATHEMATICS AND COMPUTING DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF QUEENSLAND QUEENSLAND 4072 AUSTRALIA

Abstract

In this paper we prove that there exists a strong critical set of size \(m\) in the back circulant latin square of order \(n\) for all \(\frac{n^2-1}{2} \leq m \leq \frac{n^2-n}{2}\), when \(n\) is odd. Moreover, when \(n\) is even we prove that there exists a strong critical set of size \(m\) in the back circulant latin square of order \(n\) for all \(\frac{n^2-n}{2}-(n-2) \leq m \leq \frac{n^2-n}{2}\) and \(m \in \{\frac{n^2}{4}, \frac{n^2}{4}+2, \frac{n^2}{4}+4, \ldots, \frac{n^2-n}{2}-n\}\).